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branching index, W(G), in chemistry are briefly outlined. W(G) is

defined as one half the sum of all the entries in D(G). A recursion
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formula is developed enabling W(G) to be evaluated for any molecule
whose graph G exists in the form of a tree. This formula, which
represents the first general recursion formula for trees of any kind,
is valid irrespective of the valence of the vertices of G or of the
degree of branching in G. Several closed expressions giving W(G) for
special classes of tree molecules are derived from the general formula.
One illustrative worked example is also presented. Finally, it is
shown how the presence of an arbitrary number of heteroatoms in tree-like
molecules can readily be accommodated within our general formula by

appropriately weighting the vertices and edges of G.

/X

4 In Department of Computer Science
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I. General Introduction
“"Tontemporary chemistry is focusing to an ever-increasing extent
on the relationships between the structure of molecules and their

physicochemical properties. As part of this scenario, much attention

been devoted in recent years to the search for suitable

graph-theoretical means of describing the topological structure of
a vast array of known chemical systems. -In particular, there has been
widespread usage of topological graphs and matrices for the
characterization of both individual molecular species and a wvariety
of intermolecular interactions.l=3 - These developments have brought
in their wake a resurgence of activity in applying combinatorics and

graph theory to the solution of chemical problems.""6 However, although

utilization of graphs in chemistry has a time-honored and

comprehensive history,7 the adoption of matrices by chemists is of

much more recent vintage. Matrices which have been employed to date

for the characterization of chemical systems include the adjacency

D.H. Rouvray, Roy. Inst. Chem. Revs 4, 173 (1971).
I. Gutman and N. Trinajstié; Fortschr. Chem. Forsch. 42, 50 (1973).

D.H. Rouvray, in Chemical Applications of Graph Theory, ed. A.T.
Balaban, Academic Press, London, 1977, chap. 7.

D.H. Rouvray and A.T. Balaban, in Applications of Graph Theory,
ed. R.J. Wilson and L. Beineke, Academic Press, London, 1979,
chap. 7.

N. TrinajstiG; Chemical Graph Theory I, CRC Press, Boca Raton,
Florida, 1983, chap. 4.

N. Trinajsti!, Chemical Graph Theory II, CRC Press, Boca Raton,
Florida, 1983.

D.H. Rouvray, In preparation.
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matrix, the incidence matrix, the c¢ycle matrix, and the distance
matrix.2-3 Dur prime focus of interest here will center on the distance

matrix, and more especially on its derivation for the important class

gL T80T

. of ggﬁphs commonly referred to as chemical trees.8 ‘These graphs have
T b‘beehJ:;ed extensively in the physical and biological sciences for the
I depiction and characterization of many different structures and systems.
Following chemical intuition, the usual restriction placed upon the
subclass of chemical trees known as carbon trees (C-trees) has been
that no vertex in the tree could have a valence exceeding four. In
our derivation of the distance matrix for trees, however, no restriction
of any kind has been imposed upon the types of trees that can be
considered. Accordingly, we are now able to present the first, closed
recursion formula for the general tree. Our formula remains valid
irrespective of the valences of the vertices, the degree of branching
present, or the presence of weighted vertices or edges in th; tree.

The distance matrix, D(G), can be defined for any graph G
constructed on a total of n vertices.? D(G) is the real, symmetric
matrix of order n x n whose elements, 411’ are defined as follows:

D(G) = =

dj; = length of shortest path between
vertices i and j in G

As we are concerned here only with tree graphs, the number of vertices,

n, will always exceed the number of edges in G by one. Moreover, the

o
3
]
N

8. For the first use of this term see: A. Cayley, Phil. Mag. 47,
444 (1874).

I
s e

>
P

9. D.M. Cvetkovié, M. Doob, and H. Sachs, Spectra of Graphs, Academic
Press, New York, 1980.
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path connecting any pair of vertices in G will always be unique. In
the case of chemical trees, the diagonal d;; entries are not necessarily
always zero. The dj; assume the value zero only if the species
represented are C-trees. Similarly, in certain instances, the qii
(i # j) can also take nonintegral values. This circumstance arises
whenever heterocatoms are present in the molecule, for then appropriately
edge- and vertex-weighted trees are employed to represent the species.
The corresponding qii and qii values can be obtained from general
formulas put forward by Barysz et al.10 In such cases, the
characterization of the tree structure by the modified D(G) matrices
is, of course, no longer a strictly topological one.

Up to the present, numerous applications of the distance matrix
in a wide variety of different disciplines have been documented. Apart
from the frequent use of D(G) as a foundation for a number of topological
indices (discussed in some detail below), the matrix has also been
employed in several other chemical contexts. Clark and Kettlell made
use of D(G) in their study of isomer interconversions for ensembles

of stereochemically nonrigid molecules such as PF5, with the qii

representing the shortest path sequence by which one isomer could be

10. M, Barysz, G. Jashari, R.S. Lall, V.K. Srivastava, and N.
Trinajstié, in Chemical Applications of Topology and Graph Theory,
ed. R.B. King, Elsevier, Amsterdam, 1983, p. 222.

11. M.J. Clark and S.F.A. Kettle, Inorganica Chimica Acta 14, 201
(1975).
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converted into another. D(G) has also found applications in the
modelling of crystal growt:‘n]-2 and in the study of crystal vacancies, 13
where the dii now represent lattice bonds. By means of this approach
it was possible not only to characterize imperfections in crystals

and clusters but also to predict vacancy favored positions. Another

application of D(G) has involved the prediction of the mean %X-electron -

energies and energy gaps in conjugated infinite polymers using both
the Hlickel and Pariser-Parr-Pople approximations.“" More recently,
D(G) has been used in the calculation of a number of physicochemical
parameters for these polymers.l3 Biochemists have utilized D(G) in
the construction of evolutionary and phylogenetic trees,16s17 with
the d_ii representing the mutation distances between genes as estimated
from cytochrome c¢ sequences. The matrix has also been employed in
several other disciplines, including psychology,18 communications

t:heor:y,]-9 and network flow design.20 Finally, and perhaps not

surprisingly, D(G) has also been the subject of intensive investigation

12. D. Bonchev, O. Mekenyan, and H. Fritsche, Cryst. Growth 49, 90
(1980).

13. (a) D. Bonchev, 0. Mekenyan, and H. Fritsche, Phys. Stat. Sol.
A55, 181 (1979); (b) D. Bonchev, 0. Mekenyan, and H. Fritsche,
Phys. Stat. Sol. AS56, 607 (1979).

14. (a) D. Bonchev and O. Mekenyan, Z. Naturforsch. 354, 739 (1980);

(b) D. Bonchev, O. Mekenyan, and O.E. Polansky, Z. Naturforsch.
36A, 643 (1981).

15. (a) D. Bonchev, 0. Mekenyan, and O.E. Polansky, Z. Naturforsch.
36A, 647 (1981); (b) O. Mekenyan, S. Dimitrov, and B. Bonchev,
Eur. Polym. J. 19, 1185 (1983).

16. W.M. Fitch and E. Margoliash, Science 155, 279 (1967).

17. W.H. Li, Proc. Natl. Acad. Sci. UsA 78, 1085 (1981).

18. H.J. Leavitt, J. Abn. and Soc. Psychol. 46, 38 (1951).

19. R.L. Graham and H.0. Pollak, Bell Syst. Tech. J. 50, 2495 (1971).

20. M.L. Fredman, SIAM J. Comput. 5, 83 (1976).
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by many mathematicians.21-26

The earliest use of the distance matrix in chemistry was in an

implicit form.
path_number, w, for the purpose of correlating

of alkane species with their boiling point,

molecular volume, and heats of isomerization

defined w as the sum of the chemical bonds existing between all pairs

of carbon atoms in such molecules.

In 1947 Wiener2? proposed the idea of using a so-called .

Wiener also put forward2’ a polarity
number, p, which was defined as the number of pairs of carbon atoms

separated by three carbon-carbon bonds in an alkane species.

- s -5 - = - T

the molecular structure
molecular refractivity,

and vaporizationm. He

The boiling

................

»

points of individual alkanes, tp, were a&ssumed to be given by a
biparametric linear relationship of the form:
tg = a*w + b'p + ¢ (1)

.where a, b, and c are constants for a given group of iscomers. The

21. S.L. Hakimi and S.S. Yau, Quart. Appl. Math. 22, 305 (1964).

22. M. Edelberg, M.R. Garey, and R.L. Graham, Discrete Math. 14,
23 (1976).

23. R.L. Grzham, A.J. Hoffman, and H. Hosoya, J. Graph Theory 1, 85
(1977).

24. R.L. Graham and L. Lovasz, Adv. in Math., 29, 60 (1978).

25. A. Neumaier, Eur. J. Comb. 1, 163 (1980).

26. J.M.S. Sim¥es-Pereira and C.M. Zamfirescu, Lin. Alg. and Applic.
44, 1 (1982).

27. (a) H. Wiener, J. Am. Chem. Soc., 69, 17 (1947); (b) H. Wiener,
J. Am. Chem. Soc. 69, 2636 (1947); (c) H. Wiener, J. Chem. Phys.
15, 766 (1947); (d) H. Wienmer, J. Phys. Chem. 52, 425 (1948);
(e) H. Wiener, J. Phys. Chem. 52, 1082 (1948).

.....
............
........
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:? two structural variables, w and p, have since been shown to be directly ]
:} derivable from the distance matrix, D(G). The path number, w, is equal

to half the sum of the elements of D(G), and the polarity number, Ps
equals the number of off-diagonal elements in D(G) representing the

distance three, i.e.

L .

w(©) = 3 Z' d44(6) (2)
ij

p(G) = 3 T w3(6) (3)

where w3(G) is twice the number of paths in G of length three.
Relationship (1) instituted the first wuse in chemistry of
topological distances, 1i.e. path counts, for the correlation of
physicochemical properties with the degree of molecular branching in
individual species. Relationship (2), originally due to Hosoya,28

demonstrates the close connection between w(G) and the distance matrix,

D(G). Nowadays, the Wiener path number is wusually regarded as the
first topological index.® Since many authors currently refer to this
index by the symbol W(G), we shall also adopt this convention hereafter.
Topological indices (TIs) provide in general a convenient means of

assigning a scalar magnitude to any structure of chemical significance.

!1
'.'
|
b
i
.J

Starting from the chemical graph of an individual species, a TI can f
the derived by applying an appropriate mathematical algorithm or formula i
.: to the graph. The resulting scalar descriptor is subsequently employed i
N for the mathematical characterization of the species in question. Over :
.. »
h !
-
i 28. H. Hosoya, Bull. Chem. Soc. Japan 44, 2332 (1971). X
ﬁ )
.,
{.
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the past decade, a large number of TIs have been advocated, with special
emphasis being placed on those which can offer a reliable means of
reflecting the amount of branching present in both acyclic and cyclic
molecular species. Attesting to the current high level of interest;
in this field, several reviews of TIs and their manifold . applications
to chemistry have recently appeared.é'zg'32

The Wiener index has been widely used in a variety of guises for
the correlation of branching with the bulk physicochemical properties
of species. As mehtioned above, Wiener himself correlated W(G) with
a number of different physical properties of alkane species. This
work was elaborated by Platt,33 who developed an additional graphical
invariant called the first neighbor sum, £, equal to the sum of the
first C-C neighbors of every C-C bond in the species. The index f£
was used together with p and W(G) in multiparametric equations to improve
on the correlations obtained by Wiener. Platt obtained very good
correlations and rationalized this success by hypothesizing that W{(G)
provided a measure of the mean extermal contact area of the molecule

characterized.33 A1tenburg3"’ put forward a polynomial ¢f the form:

-

-

29. D. Bonchev, J.V. Knop, and N. Trinajstié, Math. Chem. 6, 21 (1979).

30. I. Motoc, A.T. Balaban, 0. Mekenyan, and D. Bounchev, Math. Chem.
13, 369 (1982).

31. D.H. Rouvray, in Chemical Applications of Topology and Graph Theory,
ed. R.B. King, Elsevier, Amsterdam, 1983, p. 159.

32. A.T. Balaban, I. Motoc, D. Bonchev, and 0. Mekenyan, Topics Curr.
Chem. 114, 21 (1983).

33. (a) J.R. Platt, J. Chem. Phys. 15, 419 (1947); (b) J.R. Platt,
J. Phys. Chem. 56, 328 (1952).

34. (a) K. Altenburg, Kolloid 2Zeitschr. 178, 112 (1961); (b) K.
Altenburg, Brennstoff Chem. 47, 100 (1966); (c) K. Altenburg,
Brennstoff Chem. 47, 331 (1966).
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n
P(G,x) = ] akxk, (4)

K51 T
where ay is the number of pairs of atoms in alkane species separated

by the distance k, and xi is the indexed variable. Since ay is simply

half the frequency number of the distance dy in D(G), it follows that:
n
WG = T apk (5)
k51 S

and thus another route to calculate W(G) becomes accessible.

The first extension of W(G) beyond its initial application to
acyclic alkane species was made by Hosoya,28 who proposed a means of
calculating W(G) for cyclic alkanes. Hosoya's idea was that the dii
entry in D(G) be taken as the length of the -shortest path connecting
the ith and jth atom in cyclic species. This idea was adopted by
Rouvray35 in calculating an ;,ndex, R(G), which he defined as the sum
of the djj elements in D(G). Since from equation (2) we know that
W(G) is half the sum of these elements, it immediately follows that
R(G) = 2w(G). The index R(G) was determined for several different
types of species, namely for members of the alkane, alkene, alkyne
and arene series, and correlations were established for the bciling
points, melting points, densities, refractive indices, surface tensions,
and viscosities in each case. All the correlations were based on a

Walker-type36 relationship of the form:

35. (a) D.H. Rouvray, Math. Chem. 1, 125 (1975); (b) D.H. Rouvray
and B.C. Crafford, South Afr. J. Sci. 72, 47 (1976).

36. J. Walker, J. Chem. Soc. 65, 725 (1894).

R A '.‘
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z = o[R(G)]8B, (6)

where 2z represents some physicochemical parameter, and @ and B are

two constants to be determined by least squares recursion. Good to

",
",
|
3
rt
E
'.l
.
.
.t
.
.
.

excellent correlations were found in all cases. More recently, it
has been demonstrated by Bonchev et al.37 that the W(G) values for
monoalkyl- and o-dialkylbenzenes correlate extremely well with their
chromatographic retention times. Here too, a biparametric Walker-type
relationship was employed, and the results were interpreted by assuming
that retention indices depend substantially upon molecular size and
shape. To conclude our discussion of this topic, we recall that W(G)
has also been employed to predit:t:]-4 the energy relationships existing
in series of infinitely conjugated polymer éystems (vide supra).

The index W(G) = % ) d_!-_i(c) is important not only because of its

wide variety of applications and the many excellent correlations it

yields, but also because it represents the natural starting point for 3

a number of more recent TIs. Thus TIs which are closely related to

or directly derivable from D(G) include the previously mentioned polarity

number of Wiener2? and the first neighbor sum of Platt33 as well as

% the Gordon and Scantlebury index,38 the distance sum connectivity index
&}
n of Balaban,39 the information-theoretical indices of Bonchev and
2 37. D. Bonchev, 0. Mekenyan, G. Proti&, and N. Trinajstif, J. Chromatog. ;
176, 149 (1979). =
K4
38. M. Gordon and G.R. Scantlebury, Trans. Far. Soc. 60, 604 (1964). ::.‘
39, (a) D. Bonchev, A.T. Balaban, and 0. Mekenyan, J. Chem. Inf. Comp. _
Sci. 20, 106 (1980); (b) A.T. Balaban, Chem. Phys. Lett. 89, [
399 (1982). ~
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Trinajsti€;4° the atomic structural index of Randié%l used by Seybold

to investigate the carcinogenicity of aromatic hydrocarbons42 and their

derivatives,*3 and the molecular identification number of Randié.%4
In view of their widespread use in chemistry and other disciplines,
W(G) values have been determined for several specific classes of
molecules. This has been accomplished by means of appropriate recursion
formulas. The first of these, due to I'Iosoya,z8 showed that for straight
chain alkane species W(G) assumes the simple closed form (n3 - n)/6,
where n is either the number of carbon atoms in the species or the
number of vertices in the graph G. (We assume throughout in our
discussion that all chemical species are represented by C-trees, or,
equivalently, by their hydrogen-suppressed graph.) Following on from
this early work, W(G) has been systematically evaluated for many systems
of chemical interest in a series of papers by Bonchev and his associates.
Up to the present, these workers have published recursion formulas
for trees having unbranched branches,"o monocylic st:ructures,"s cyclic

structures having acyclic bramr:hes,“6 polycyclic structures,47 spiro

40. D. Bonchev and N. Trinajstié, J. Chem. Phys. 67, 4517 (1977).
41. M. Randié, Math. Chem. 7, 5 (1979).

42. P.G. Seybold, Intn. J. Quant. Chem., Quant. Biol. Symp. 10, 95
(1983).
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systems, 48 and bridged polycyclic structures. 49 wNo global recursion

formula has ever been advanced for the general tree; this lacuna we

nov remedy here.
II. Mathematical Formalism

The method we adopt to determine W(G) for the general tree makes
inherent use of the fact that for all trees there will exist one and
only one path connecting any pair of v;rtices in the tree. It
automatically follows that this unique path mus-c be the shortest path
between the vertices. In our derivation we shall also exploit the
recursive nature of trees by studying the decomposition' of the geuer.al
tree into a number of subtrees around a chosen vertex. We start from
a completely general tree structure having a total of n vertices; this
structure we shall designate by the symbol T. For convenience in
vigualizing our approach, we depict T as shown in Figure 1. OCne vertex
in T has been arbitrarily selected as our focus of attention; this
vertex we refer to as the root of the tree and assign it the symbol
Vy. Emanating from vy will be a total of m edges which terminate on

vertices vj, ¥2, ...., Vp. Each of the vertices v} to vy is regarded

as the apical vertex of a subtree, as illustrated in Figure 1, These
subtrees will be designated by the symbols T;, T2, ... Ty and we shall

assume chat each subtree contains a total of ni, nj, ..., ny vertices,

i

b" -_—

p.-.

P:-::.-

- 48. 0. Mekenyan, D. Bonchev, and N. Trinajstid, Math. Chem. 6, 93
i-.';-: (1979).

" 49. 0. Mekenyan, D. Bonchev, and N. Trinajstié, Intn. J. Quant. Chem.

19, 929 (1981).
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re.spectively. Since each subtree is of arbitrary size and complexity,
this type of decomposition of T can be carried out without loss of
any generality.

To determine W(G) for T, account must i:e taken of the path distances
separating all pairs of vertices in T. For convenience of visualization,
we shall use the symbol 9 to denote an arbitrary vertex selected from

each subtree Tj, where 1 < i < m. Inspection of Figure 1 reveals that

three &iffering types of distance need to be considered for the
calculation of W(G). These are: (I) distances originating from vertex
vy and terminating on some other vertex in T; (II) distances originating
from a vertex i in subtree T.i_- and terminating in the same subtree
T;; and (III) distances originating from a vertex 9i in subtree '1‘_1_

and terminating on a vertex 93 in another subtree Ti' By consideriﬁg
each of these distance types in turn and deriving an appropriate formula
for each, we show how a recursive algorithm can be developed which
yields W(G) for the general tree T. As is usual in developing such
algorithms, we shall assume that certain information is known about

each of the subtrees Tj; to Tp. In particular, we assume that for each

subtree, T;, the sums

S; = Z d(vi,qi) (7
9ie Ti

are known, where d(vi,qi) is the distance traversed in moving from

vertex vy to vertex qj with 1 < i < m. We show how this information

can be exploited to attain the desired result for T, as well as the

corresponding quantity S for T.
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ITI. Derivation of W(G) for the General Tree

e v v v
G4 e
2

The recursion formula we derive for the general tree, T, is
comprised of three parts, one for each of the three different distance

types referred to above. We now consider each distance type

individually.

(a) Type (1) Distances

For the subtree T;, the sum of the path lengths from vertex Ve to vertex

qi may be expressed as:

s = Z d(Vr,Qi)- _ (8)
9 ¢ Ty -

If all m subtrees attached at vertices v,-: (1{i< m) are taken into

consideration, the total number of distances becomes:

s = § ¢ I dlvp,qi)). (9)
i=1 9ieTy - T

Since q; € Tj, we know that in all cases
d(vr,qi) = d(vi,qi) + 1. (10)

Accordingly, equation (9) will assume the form:

s(I) = 7 €7 (dlvg,qy) + 1)) (11)
i=1 qieTi - =
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E m
=] I dlvged+ 1§ g, (12)
i=1 q_i_sT_i_. i=1 qie'!i .

By making use of equation (7) and the definition of nj, we can rewrite

equation (12) as:
m

m
(D)= 7 54+ 7§ (13)
= = 1=-1 :

(b) Type (II) Distances

The path lengths here relate to vertices entirely located within a
given subtree, ?i' As pointed out in the previous section, the
assumption is made that the. Wiener index, Vif is known for each of
the ?i' Accordingly, the expression for the sum, S(II), will take

the simple form:

o
s(ID = 7wy (14)
P

(c) Type (I1I1) Distances

To determine the path length sum for paths starting in one subtree,
Ti, and terminating in another subtree, Tj, we shall focus for simplicity
on the vertices q; € T; and qj € Ty. The distance traversed in

proceeding from qi to 93 will be:

d(qg,qj) = d(qy,vy) + dlqj,vy) + 2 (15)

Summing for all possible pairs (qy, qi) by making use of the relationship
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expressed in equation (15), we obtain for the general summation:

s(III) = 7§ d(qq,vy) (ng + 03 + .... + ng)
q1e T1 : -

+ J d(qz,v3) (np +n3 + .... +0p) + ...,
a2e T2 -

+ z d(qE,YE) (n1 +ny + ... qErl)

+ 2 (number of pairs) (16)
A closed expression for the number of pairs, (qi,qi), may be derived

in the following way:

Number of pairs = njny + ninj + ....... + niny
+ npn3 + nong + ...... + nong

o ?g'l QE

= [(np +ng + .... + qa)z - n% - n% - e - QE?]/Z

m
= [(n - 1)2 - ) n§1/z (17)
i=1 -

Equation (16) may now be simplified by making use of equation (7) thus:
s(111) = S](n-1-mn3)+8S2(n=-1=-mn2)+ .....+585p(n=-1¢=ng)

n
+(-12- 7 ni
ls]_ -
m

m
= 7S (n-1-n)+(=-12- 7§ n? (18)
i=1 = - i=17
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(d) The Final Result

At this point we are in a position to sum the topological distances
représented by equations (13), (14), and (18) to obtain the result

for W(G) for the general tree as follows:
wee) = s(I) 4 s(11) 4 g(III) (19)

Upon substituting into equation (19) the relevant expressions and
carrying out some simplifications of the resulting equation, we obtain
our final formula for W(G), which we display here together with two
other formulas which w.1l be needed to recursively determine the Wiener

index:

n(G) =1+ ] ng (20)
i=1 =
=
S(G) =n(G) -1+ | s4 (21)
i=1 =
=
WG) = J [Sg (n=-ng) +Wg - ng(ng - 1)] + (n - 1)2 (22)
o -0 07

IV. Derivation of W(G) for Certain Classes of Molecules

We now demonstrate that the completely general formula presented
in equation (22), can be readily applied to certain specific classes

of molecules to derive closed recursion formulas.
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The Star Molecule

For a molecule possessing a graph G in the form of a star, as
illustrated in Figure 2, W(G) assumes a particularly simple form. Since
each of the subtrees is now represented by a single vertex, the terms

in equation (22) have simple pumerical values:

The equation for the star molecule thus simplifies to:

W(G) = (n - 1)2, S (23)

a result originally obtained by Bonchev and ’l‘rinajst:ic'.l*0

The Unbranched Chain Molecule

As mentioned sbove, the unbranched chain path molacule also has
a W(G) index which can be obtained as a simple closed formula. If
one end of the chain is taken as the root, as illustrated in Figure
3, the graph G can be decomposed into one subtree containing (n - 1)
vertices. The terms in equation (22) are then given by the following

expressions, assuming by induction the indicated expression for Wj:
ny = (n-1)

81-1+2+....+(n-2)'%(n-1) (n - 2)

Wp=gla-13-(a- D]

\.'\.' "y
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Substitution of these expressions into equation (22), yields the result

for the unbranched chain molecule:
WE) = 2 (a3 - n) (24)

in accordance with the results of Hosoya,28 and Bonchev and Trinajstié.4°

The Star Molecule with Attached Chain

In this case we take as the root the vertex at the end of the
chain which is attached to the star, as ghown in Figure 4. Let 2
be the length of the chain, so that the root vertex has degree a ~ 2.
Labeling the subéree at the root which comprises part of the =zhain

as number one, we have

ny = 2

L
S1=1+2+ ...+ Q@-1=()

s = l K )

'3} s (2 2)

. ny =1

S{ =0 for £ = 2, ..., (n - 2)

- Wy =0

@

ﬁ?: as in the two cases treated already. Then from (22) we calculate
-

o L L

' WE) = (n - D2 +0(,) -5 (22+5) () © o (25)
o

r:. .

o

pr-

e

. -

=

Lo
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or W(E) = () [n -

Note that (23) is obtained whem £ = 1 and (24) when & = n - 1.

-

g

The Star Molecule with Attached Chains

Here we assume that the spokes forming the star have lengths 21,

PP, T

ee+s &) as illustrated in Figure 5. By taking the central vertex as

the root, the graph G can again be decomposed into k subtree chains

Sl

k
of length 23, for i = 1, ..., k, where n ='Z 2§ + 1. The terms in s
z j51 =

equation (22) will be:

ni’ 21 ’
- - 9 .
Si=1+2+ ...... +(24 - 1) = (2")

Wi’%(!.i‘f.i)

and these lead to the following expression for W(G):

oy 2% + 5
We) = J (2)[n-—-—3—1+<n-1>2. (26)

i=1

The special case of this formula when all the chains are of length

- two, i.e. 25 = 2, is given by the equation:

.

L

- W) = k(n - 3) + (a - 1)2

-

&: Since in this instance k = (n - 1)/2, the formula can be further simplified to:

3 .
W(G) = %(n - 1)(3n - 5), (27)
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The Tree Molecule with Unbranched Branches

~Here we let the branches of the tree molecule be of arbitrary
length, as illustrated in Figure 6. Let us assume that the branches
have lengths Lj, Ly, ..., Lyx which are attached to the main chain at

positions 1<%; < ... { %) < C, where C denotes the length of the main
chain. We shall establish the formula

+1 L; +1 L;i +1
T - S T Y T
3 i 2

x
”~~
()
A 4
n
”~~
aQ
p—
Jret~

L4 c-% +1
+1Lg [+ 2701+ Ty 4y -ty
T = 2 . = -
1 i<j
L +1 L: +1
+ 1 Ly (27 e 47 ) (28)
14 2 =2

by a double induction first on m, the number of branches, and then
on Lj, the number of atoms in the first branch. To start, when m = 0
the equation reduces to the formula (C ; 1), established earlier for
a chain of length C. Now assume m > 0 and that Lj; > 1. We apply (22),

using the 1last atom of branch 1 as the root. In this case there is

only one subtree, so we have

n) = (n - 1).

When only one subtree is present, equation (22) for W becomes

W’81+W1+(n-1)

=W + 8.

By induction, we know that W; is given by (28) with L; replaced by

¥ ., . e . . R ,-~',-. S .
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(Ly - 1). The difference between the original (28) and (28) with Ly

replaced by (L] - 1) is (accounting here for the six terms respectively):

+ 1
3

1 Li

L L Ly +
R (S IR o } I (oM I GO}

21

C-2+1
+ [(
2

) + ( Mo+ Doy (e - 2D
K S

+1

Ly
) [LyC

L L: + 1
y - Chy + ¢4 , Ol
1 2

which, after some elementary algebra, is the same as:

C-21+1

,

. L1 . Ry,
0+ (2 ) + CLp + [, ) + (

+ Dot -2+ Lo
p1 14 YT

Our proof i3 completed by showing that this difference agrees with

S. By a direct computation we have

S=1+2+ ...+ (L] - 1) (points in same branch)
+ 1L (point of juncture)
+ (L1 + 1)+ (L +2) + ..... + (L) + 2; - 1)  (points left

of juncture)

+ (L + 1)+ (L +2) +..... + (Ly + (C - 21)) (points right
of juncture)

Ls
A
+ ] I [Lp+(24- #) +&i (points on other branches)
51 be1
L1 +1 £
= ( 2)+(11-1).L1+(_’)+(C-21).L1
C-2,+1 ) Ly + 1
+ ( ) + [Lily + (% - 5H).Ly + ( )]
2 1 1 4 1 2

Wt e
TP AP U ST WA VA S WA S 3




where b is the distance from the main chain to the various atoms on
the jth branch. Again, using elementary algebra, this latter expression
is seen to agree with our previously computed difference between the
original (28) and (28) with L; replaced by (Lj - 1). Thus, the proof
is completed. Notwithstanding the fact that this is a new result,
it can be shown to be equivalent to the formula published by Bonchev
and Trinajstié,40 though it is simpler in format.

We now apply (28) to a few special cases which have been considered

individually in the literature.

The Tree Molecule with Branches of Length One

The graph of the molecule is illustrated in Figure 7. Again letting
the length of the chain be C, we have, in terms of the notation of
(28), that m = 2(C - 2), Ly =Ly = ... =Lgp =1, 2 =2, &9 =2, 23 = 3,

L4 =3, ..., 22.= C -1, and so

m -

c+1 = L) C-%+1

w(G)=(3)+o+c-21+ZI()+( , )12
i=1 g=2 2
+ L Qg -4 + 2
2K <Yy < c-1 1<ij<m
=1 ( 3
= 5 (3¢% - 27C + 32). , (29)

The Tree Molecule with Branches of Given Length

This case is similar to the immediately preceeding case, but now
all the branches are of length L instead of length one. The graph

is shown in Figure 8. Again with C denoting the length of the chain,
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we can use (28) with m = 2(C - 2), L} =Ly = *-* = L, =1L, 2i=2,

9 =2, 83 =3, 24 =3, ***, 2 = C ~ 1, to obtain

m m
c+1 e L+1 e L+1
w(c)-<3)+2<3>+c-2(2
i=1 i=1
c-1 2 -2+ 1
+L- 7 D+ C , D2+ 120§ (gp - g1)b
2=2 2<2<29<C-1
L+1
+1L .

c+1 L+1 L+1 L+1
= ( 3 Y+ (2¢ - 4) - [( 3 Y + ¢ ( 2 ) + (2¢ - 5)L-( 2 )]
C c-1
+ 4L [(3) + L ( 3 ) 1. (30)

V. An Illustrative Worked Example

The formulas derived above relate to specific classes of tree-like
molecules. When the Wiener index, W(G), is required for a molecule
not belonging to one of these classes, resort must be made to our general
formula given in equation (22). Below we illustrate how our formula

is applied in the case of the molecule of 2,5-dimethyl-2-ethyl-~4-propyl

hexane. This molecule has a graph, G, which does not belong in any
of the above special <c¢lasses; 1its hydrogen-suppressed graph is
illustrated in Figure 9.

As in all the previously described special cases, to determine
W(G) for this molecule one sets out by arbi.trarily selecting one vertex
in the graph of the molecule and calling this the root. In Figure

9 the root vertex we have selected is indicated by a full circle.
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Scafting from this root, one moves out progressively toward the
extremities of the graph, as indicated by the arrows placed on the
edges of the graph. It is the outermost vertices which are tackled
first. For each vertex the triplet (nj, Sj, Vi) is evaluated in turm
starting from the outermost vertices and working back towards the root.
The value of the triplet (qi, Si, wi) for the root, which will be the
last triplet to be determined, automatically gives the required value
of W(G) for the molecule as a whole. This is equivalent to calculating
W(G) by substituting appropriate terms into equation (22) in a recursive
manner.

Because every vertex at an extremity of the graph G will have
only one attached edge, the triplet (913 533 Qi) will always assume
the value (1,0,0) for such vertices and may be written in directly.
All other triplets need to be calculated. Considering next the two
longest side chains in the molecule, it is readily seen that for a
vertex attached to the end vertex the triplet will assume the value
(2,1,1). The third vertex from the end along the longest chain has
the triplet (3,3,4). This is calculated by summing the two previously
evaluated ny values, and by making use of equations (20-22) as showm

below:

ng=l+n=1+2=3
Si=n-1+S;=3-1+1=3

Wi =8S; (n-np)+W -ny(np-1)+ (n-1)2

= 1(3-2)+1-21+22=24

(nib si, wi) = (3,3,4).
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The other triplets are progressively evaluated by an analogous procedure
\ until the root vertex is reached. The values obtained for each of
u the triplets are shown in Figure 9. The triplet for the root comes

out to be (13,27,258), so that W(G) = 258.

VI. The Substitution of Carbon Atoms by Heteroatoms

We now consider the changes that need to be made in our general

formula (22) when heteroatoms are substituted for carbon atoms in

tree-like molecules. In purely graph-theoretical terms, such
substitution corresponds to a weighting of the vertices and edges in
the tree graph, G. The number of edges and vertices in G wixich can

be weighted is arbitrary; if necessary, all of the edges and vertices

can be weighted.

Let us suppose initially that just one heteroatom, A, is substituted

for a carbon atom in the tree-like molecule and that A has the same

p valence as that of the atom it substitutes. The situation which then
[ arises is illustrated in Figure 10. The initial edge weights for all
o

t edges emanating f ,m the original carbon atom we represent as 9§,
r’_ 62,...,62 and the new edge weights after the substitution of the carboa
E atom by A we shall represent as oy, @2,...., 3p- We shall also choose
s the vertex associated with atom A as the root vertex. From equations
i' (13) and (14), it follows that:

[

Snew * So1d + I g (ag - &) (31)
» :

Wnew * Wold + 01 (Spew - So1d) - E (e - Gi)“iz

' + d(vA,VA)/Z

...........................
.............
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> = Wo1d + | (ag = §)ng(n - ng) + d(vp,vp)/2 (32)
o i

P

ﬂ where Spey and Wpey refer to the respective values of S and W after
j the substitution of atom A, S,14 and W,)4 refer to these values before

the substitution of atom A, and d(va,vp) is the weight assigned to

m atom A for the dj{ matrix entry in D(G).
- From equation (32), it is seen that the substitution of one carbon

atom by one heteroatom, A, will produce a change in the value of W(G)

_ for the tree-like molecule equal to:

AW(G) = T (aj - &)njn - ny) + d(va,va)/2 (33)
P i -— — — -

, -—

A The effect of substituting one heterocatom is thus to bring about a

change in the value of (aj - &;) for each pair of vertices, (X,Y),
such that the shortest path from X to Y includes the edge in question,
plus the addition of one half of the atomic weighting term, d(vp,vp).

The total number of pairs of vertices (X,Y) will be given by the

expression nj(n - nj). It follows that the substitution of h heteroatoms

for carbon atoms will result in a new W(G) value for the tree-like

= v
e ..
R PR - e
. Co S Yy

molecule equal to:
“‘f—f:; h
e W(Glpew » W(Blo1a + § J @y =& )ngln - ng) + § dlva,va)/2  (34)
oS _‘ T Rif T T T T s
°
B -~ : From the above reasoning, it 1s evident that the substitution

of heteroatoms into a tree-like molecule for which W(G) is known does

not neccessitate a de novo calculation of W(G). The known W(G), referred

5o . v » A . '.‘_Y". "
', L .
. -1. . . .
R LY
. N ‘, 3 . -

to above as W(G)y14, is simply modified upon substitution by the two
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:’_jf.:f? latter terms in equation (34). It need hardly be emphasized that the

modification of W(G)glg using equation (34) involves a much shorter
calculation then a recalculation of W(G) de novo. To illustrate this
point, we consider the molecule shown in Figure 9 again to suppose
now that the root atom is replaced by the hetercatom N. Using the
tables of Barysz et al.,10 we know that the dH-. entry for N is 0.143
and that the C-N bond has a weighting of 0.857. In this case, therefore,

the new value of W(G) is given straightforwardly by the expression:

, 3
W(Glpew = W(Glo1g + | T (0.857 - 1)(13 - ng) + | 0.143/2
- —  h=al i=l = a=1
0.143

= 258 - 14.586 + =5 = 243.486

Such a procedure effects a substantial saving in time when W(Glgpey

values are to be computed.
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Captions to Figures

Figure 1l: A representation of the general tree, with one distinguished
s root.

Figure 2

The graph of a star molecule with one distinguished vertex.

Figure 3: The graph of an wunbranched chain molecule with one

distinguished vertex.

Figure 4: The graph of a star molecule with attached chain and one
distinguished vertex.

Figure 5: The graph of a star molecule with attached chains with one
distinguished vertex. .

Figure 6: The graph of a chain molecule having unbranched branches
and one distinguished vertex.

Figure 7: The graph of a tree molecule having branches of length one
and one distinguished vertex.

Figure 8: The graph of a tree molecule having branches of given length
and one distinguished vertex.

Figure 9: Graph of the molecule of 2,5-dimethyl-2-ethyl-4-propyl-hexane
with one distinguished vertex.

Figure 10: Representation of the substitution of a heteroatom A iato ‘
the graph of a hydrocarbon molecule. !
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